Semidefinite programming and eigenvalue bounds for the graph partition problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidefinite programming and eigenvalue bounds for the graph partition problem

The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the total weight of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes of graphs and also show how to aggregate additional triangle...

متن کامل

An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem

We derive a new semidefinite programming relaxation for the general graph partition problem (GPP). Our relaxation is based on matrix lifting with matrix variable having order equal to the number of vertices of the graph. We show that this relaxation is equivalent to the Frieze-Jerrum relaxation [A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut and max bisection. Algorith...

متن کامل

On semidefinite programming bounds for graph bandwidth

We propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems, Theoretical Computer Science, 235(1):25-42, 2000]...

متن کامل

Eigenvalue Bounds Versus Semidefinite Relaxations for the Quadratic Assignment Problem

It was recently demonstrated that a well-known eigenvalue bound for the Quadratic Assignment Problem (QAP) actually corresponds to a semideenite programming (SDP) relaxation. However, for this bound to be computationally useful the assignment constraints of the QAP must rst be eliminated, and the bound then applied to a lower-dimensional problem. The resulting \projected eigenvalue bound" is on...

متن کامل

Semidefinite Programming Relaxations for the Graph Partitioning Problem

A semideenite programming, SDP, relaxation for the graph partitioning problem, GP, is derived using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of GP. The special structure of the relaxation is exploited in order to project the SDP onto the minimal face, of the cone of positive semideenite matrices, which contains the feasible set. This guarantees tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2014

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-014-0817-6